Highest vectors of representations (total 22) ; the vectors are over the primal subalgebra. | \(g_{-5}\) | \(g_{9}\) | \(-g_{3}+g_{-1}\) | \(g_{-2}+g_{-8}\) | \(-g_{11}+g_{6}\) | \(g_{-14}\) | \(h_{2}+h_{1}\) | \(-h_{3}+1/2h_{1}\) | \(g_{14}\) | \(-g_{-6}+g_{-11}\) | \(g_{8}+g_{2}\) | \(-g_{1}+g_{-3}\) | \(g_{-9}\) | \(g_{5}\) | \(g_{15}+g_{10}\) | \(g_{22}\) | \(g_{16}\) | \(g_{23}\) | \(g_{21}\) | \(g_{18}\) | \(g_{24}\) | \(g_{20}\) |
weight | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(2\omega_{1}\) | \(4\omega_{1}\) | \(4\omega_{1}\) | \(4\omega_{1}\) | \(4\omega_{1}\) | \(4\omega_{1}\) | \(4\omega_{1}\) | \(4\omega_{1}\) |
weights rel. to Cartan of (centralizer+semisimple s.a.). | \(-4\psi_{1}-6\psi_{2}\) | \(-2\psi_{1}-6\psi_{2}\) | \(-2\psi_{1}-4\psi_{2}\) | \(-2\psi_{1}-2\psi_{2}\) | \(-2\psi_{2}\) | \(-2\psi_{1}\) | \(0\) | \(0\) | \(2\psi_{1}\) | \(2\psi_{2}\) | \(2\psi_{1}+2\psi_{2}\) | \(2\psi_{1}+4\psi_{2}\) | \(2\psi_{1}+6\psi_{2}\) | \(4\psi_{1}+6\psi_{2}\) | \(2\omega_{1}\) | \(4\omega_{1}-2\psi_{1}-4\psi_{2}\) | \(4\omega_{1}-2\psi_{1}-2\psi_{2}\) | \(4\omega_{1}-2\psi_{2}\) | \(4\omega_{1}\) | \(4\omega_{1}+2\psi_{2}\) | \(4\omega_{1}+2\psi_{1}+2\psi_{2}\) | \(4\omega_{1}+2\psi_{1}+4\psi_{2}\) |
Isotypical components + highest weight | \(\displaystyle V_{-4\psi_{1}-6\psi_{2}} \) → (0, -4, -6) | \(\displaystyle V_{-2\psi_{1}-6\psi_{2}} \) → (0, -2, -6) | \(\displaystyle V_{-2\psi_{1}-4\psi_{2}} \) → (0, -2, -4) | \(\displaystyle V_{-2\psi_{1}-2\psi_{2}} \) → (0, -2, -2) | \(\displaystyle V_{-2\psi_{2}} \) → (0, 0, -2) | \(\displaystyle V_{-2\psi_{1}} \) → (0, -2, 0) | \(\displaystyle V_{0} \) → (0, 0, 0) | \(\displaystyle V_{2\psi_{1}} \) → (0, 2, 0) | \(\displaystyle V_{2\psi_{2}} \) → (0, 0, 2) | \(\displaystyle V_{2\psi_{1}+2\psi_{2}} \) → (0, 2, 2) | \(\displaystyle V_{2\psi_{1}+4\psi_{2}} \) → (0, 2, 4) | \(\displaystyle V_{2\psi_{1}+6\psi_{2}} \) → (0, 2, 6) | \(\displaystyle V_{4\psi_{1}+6\psi_{2}} \) → (0, 4, 6) | \(\displaystyle V_{2\omega_{1}} \) → (2, 0, 0) | \(\displaystyle V_{4\omega_{1}-2\psi_{1}-4\psi_{2}} \) → (4, -2, -4) | \(\displaystyle V_{4\omega_{1}-2\psi_{1}-2\psi_{2}} \) → (4, -2, -2) | \(\displaystyle V_{4\omega_{1}-2\psi_{2}} \) → (4, 0, -2) | \(\displaystyle V_{4\omega_{1}} \) → (4, 0, 0) | \(\displaystyle V_{4\omega_{1}+2\psi_{2}} \) → (4, 0, 2) | \(\displaystyle V_{4\omega_{1}+2\psi_{1}+2\psi_{2}} \) → (4, 2, 2) | \(\displaystyle V_{4\omega_{1}+2\psi_{1}+4\psi_{2}} \) → (4, 2, 4) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | \(W_{6}\) | \(W_{7}\) | \(W_{8}\) | \(W_{9}\) | \(W_{10}\) | \(W_{11}\) | \(W_{12}\) | \(W_{13}\) | \(W_{14}\) | \(W_{15}\) | \(W_{16}\) | \(W_{17}\) | \(W_{18}\) | \(W_{19}\) | \(W_{20}\) | \(W_{21}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. |
|
|
|
|
|
| Cartan of centralizer component.
|
|
|
|
|
|
| Semisimple subalgebra component.
|
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(-4\psi_{1}-6\psi_{2}\) | \(-2\psi_{1}-6\psi_{2}\) | \(-2\psi_{1}-4\psi_{2}\) | \(-2\psi_{1}-2\psi_{2}\) | \(-2\psi_{2}\) | \(-2\psi_{1}\) | \(0\) | \(2\psi_{1}\) | \(2\psi_{2}\) | \(2\psi_{1}+2\psi_{2}\) | \(2\psi_{1}+4\psi_{2}\) | \(2\psi_{1}+6\psi_{2}\) | \(4\psi_{1}+6\psi_{2}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(4\omega_{1}-2\psi_{1}-4\psi_{2}\) \(2\omega_{1}-2\psi_{1}-4\psi_{2}\) \(-2\psi_{1}-4\psi_{2}\) \(-2\omega_{1}-2\psi_{1}-4\psi_{2}\) \(-4\omega_{1}-2\psi_{1}-4\psi_{2}\) | \(4\omega_{1}-2\psi_{1}-2\psi_{2}\) \(2\omega_{1}-2\psi_{1}-2\psi_{2}\) \(-2\psi_{1}-2\psi_{2}\) \(-2\omega_{1}-2\psi_{1}-2\psi_{2}\) \(-4\omega_{1}-2\psi_{1}-2\psi_{2}\) | \(4\omega_{1}-2\psi_{2}\) \(2\omega_{1}-2\psi_{2}\) \(-2\psi_{2}\) \(-2\omega_{1}-2\psi_{2}\) \(-4\omega_{1}-2\psi_{2}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(4\omega_{1}+2\psi_{2}\) \(2\omega_{1}+2\psi_{2}\) \(2\psi_{2}\) \(-2\omega_{1}+2\psi_{2}\) \(-4\omega_{1}+2\psi_{2}\) | \(4\omega_{1}+2\psi_{1}+2\psi_{2}\) \(2\omega_{1}+2\psi_{1}+2\psi_{2}\) \(2\psi_{1}+2\psi_{2}\) \(-2\omega_{1}+2\psi_{1}+2\psi_{2}\) \(-4\omega_{1}+2\psi_{1}+2\psi_{2}\) | \(4\omega_{1}+2\psi_{1}+4\psi_{2}\) \(2\omega_{1}+2\psi_{1}+4\psi_{2}\) \(2\psi_{1}+4\psi_{2}\) \(-2\omega_{1}+2\psi_{1}+4\psi_{2}\) \(-4\omega_{1}+2\psi_{1}+4\psi_{2}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{-4\psi_{1}-6\psi_{2}}\) | \(\displaystyle M_{-2\psi_{1}-6\psi_{2}}\) | \(\displaystyle M_{-2\psi_{1}-4\psi_{2}}\) | \(\displaystyle M_{-2\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{-2\psi_{2}}\) | \(\displaystyle M_{-2\psi_{1}}\) | \(\displaystyle M_{0}\) | \(\displaystyle M_{2\psi_{1}}\) | \(\displaystyle M_{2\psi_{2}}\) | \(\displaystyle M_{2\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{2\psi_{1}+4\psi_{2}}\) | \(\displaystyle M_{2\psi_{1}+6\psi_{2}}\) | \(\displaystyle M_{4\psi_{1}+6\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{4\omega_{1}-2\psi_{1}-4\psi_{2}}\oplus M_{2\omega_{1}-2\psi_{1}-4\psi_{2}}\oplus M_{-2\psi_{1}-4\psi_{2}}\oplus M_{-2\omega_{1}-2\psi_{1}-4\psi_{2}} \oplus M_{-4\omega_{1}-2\psi_{1}-4\psi_{2}}\) | \(\displaystyle M_{4\omega_{1}-2\psi_{1}-2\psi_{2}}\oplus M_{2\omega_{1}-2\psi_{1}-2\psi_{2}}\oplus M_{-2\psi_{1}-2\psi_{2}}\oplus M_{-2\omega_{1}-2\psi_{1}-2\psi_{2}} \oplus M_{-4\omega_{1}-2\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{4\omega_{1}-2\psi_{2}}\oplus M_{2\omega_{1}-2\psi_{2}}\oplus M_{-2\psi_{2}}\oplus M_{-2\omega_{1}-2\psi_{2}}\oplus M_{-4\omega_{1}-2\psi_{2}}\) | \(\displaystyle M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\) | \(\displaystyle M_{4\omega_{1}+2\psi_{2}}\oplus M_{2\omega_{1}+2\psi_{2}}\oplus M_{2\psi_{2}}\oplus M_{-2\omega_{1}+2\psi_{2}}\oplus M_{-4\omega_{1}+2\psi_{2}}\) | \(\displaystyle M_{4\omega_{1}+2\psi_{1}+2\psi_{2}}\oplus M_{2\omega_{1}+2\psi_{1}+2\psi_{2}}\oplus M_{2\psi_{1}+2\psi_{2}}\oplus M_{-2\omega_{1}+2\psi_{1}+2\psi_{2}} \oplus M_{-4\omega_{1}+2\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{4\omega_{1}+2\psi_{1}+4\psi_{2}}\oplus M_{2\omega_{1}+2\psi_{1}+4\psi_{2}}\oplus M_{2\psi_{1}+4\psi_{2}}\oplus M_{-2\omega_{1}+2\psi_{1}+4\psi_{2}} \oplus M_{-4\omega_{1}+2\psi_{1}+4\psi_{2}}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{-4\psi_{1}-6\psi_{2}}\) | \(\displaystyle M_{-2\psi_{1}-6\psi_{2}}\) | \(\displaystyle M_{-2\psi_{1}-4\psi_{2}}\) | \(\displaystyle M_{-2\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{-2\psi_{2}}\) | \(\displaystyle M_{-2\psi_{1}}\) | \(\displaystyle 2M_{0}\) | \(\displaystyle M_{2\psi_{1}}\) | \(\displaystyle M_{2\psi_{2}}\) | \(\displaystyle M_{2\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{2\psi_{1}+4\psi_{2}}\) | \(\displaystyle M_{2\psi_{1}+6\psi_{2}}\) | \(\displaystyle M_{4\psi_{1}+6\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{4\omega_{1}-2\psi_{1}-4\psi_{2}}\oplus M_{2\omega_{1}-2\psi_{1}-4\psi_{2}}\oplus M_{-2\psi_{1}-4\psi_{2}}\oplus M_{-2\omega_{1}-2\psi_{1}-4\psi_{2}} \oplus M_{-4\omega_{1}-2\psi_{1}-4\psi_{2}}\) | \(\displaystyle M_{4\omega_{1}-2\psi_{1}-2\psi_{2}}\oplus M_{2\omega_{1}-2\psi_{1}-2\psi_{2}}\oplus M_{-2\psi_{1}-2\psi_{2}}\oplus M_{-2\omega_{1}-2\psi_{1}-2\psi_{2}} \oplus M_{-4\omega_{1}-2\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{4\omega_{1}-2\psi_{2}}\oplus M_{2\omega_{1}-2\psi_{2}}\oplus M_{-2\psi_{2}}\oplus M_{-2\omega_{1}-2\psi_{2}}\oplus M_{-4\omega_{1}-2\psi_{2}}\) | \(\displaystyle M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\) | \(\displaystyle M_{4\omega_{1}+2\psi_{2}}\oplus M_{2\omega_{1}+2\psi_{2}}\oplus M_{2\psi_{2}}\oplus M_{-2\omega_{1}+2\psi_{2}}\oplus M_{-4\omega_{1}+2\psi_{2}}\) | \(\displaystyle M_{4\omega_{1}+2\psi_{1}+2\psi_{2}}\oplus M_{2\omega_{1}+2\psi_{1}+2\psi_{2}}\oplus M_{2\psi_{1}+2\psi_{2}}\oplus M_{-2\omega_{1}+2\psi_{1}+2\psi_{2}} \oplus M_{-4\omega_{1}+2\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{4\omega_{1}+2\psi_{1}+4\psi_{2}}\oplus M_{2\omega_{1}+2\psi_{1}+4\psi_{2}}\oplus M_{2\psi_{1}+4\psi_{2}}\oplus M_{-2\omega_{1}+2\psi_{1}+4\psi_{2}} \oplus M_{-4\omega_{1}+2\psi_{1}+4\psi_{2}}\) |
2\\ |